After posting the first instalment of THE Car’s Features a couple days back, JQ is wasting no time and today he explains some of the goals and design ideas.
It would seem the old quote still rings true today with JQ; “Simplify and add lightness.” – Colin Chapman, Lotus

There is no point in making a car if it isn’t better than what’s already available.
So what did I want to improve?

I had three main performance related goals for my car design, and every single decision I made regarding the design, I tried to think how it effected these three points.

1. Maximum steering in all situations. This was number one, because I felt that no car on the market had enough steering, steering always limited the maximum speed one could enter a corner, or drive through it. Only the old Crono had enough steering. So I knew if I made a car that has steering everywhere, I already had an edge on many of my competitors.
Click Read More
www.jq-products.com


Link to THE Car – Part 3 Gallery
2. Corner Speed. Posting fast laptimes is all about cornerspeed. A ridiculous amount of steering isn’t enough, if the car lacks cornerspeed. It is hard to explain, but some cars turn into a corner, and then tend to want to stop, others just keep turning and going. This always perplexed me. I wanted to make sure THE Car maintained cornerspeed no matter who was driving.

3. Bump Handling. When the A-main comes around, and the track is bumpy, no driver can win with a bad handling car. This is a fact. Handling the bumps well had to be a priority for my design, and it proved to be the toughest challenge to conquer.

I had two main design related goal, and they were to:

1. Keep It Simple!

I am not a fan of being innovative for the sake of innovation, or designing stuff which is more complicated than it needs to be, just in order to get a “wow” reaction when someone looks at it. Because that “wow” will fade when you are working on the car, fixing it between races, or when it falls apart in the main.

2. Make it light!

All current cars are overweight. We have a minimum weight limit, so lets live by it! In some forms of racing, extra weight is added to the winner of the previous race, in order to slow him down in an attempt to make racing more exciting. Key words -> More weight = slower. Yes, also in RC, yes, also if you are a beginner, yes, also in clubraces. If a heavy car is easier to drive, faster, or better, it is because the light one has the wrong set up, or wrong tyres, not because more weight is better.

I also wanted to make it look good. But I would rather win with an ugly car, than be slow with the best looking car. And obviously I wanted to make it durable and strong, that goes without saying.

Suspension

Suspension geometry seems so simple, and most cars seem to be the same in this department, but there are differences. By suspension geometry I mean the length and position of the lower and upper arms, the shock positions, shock length, arm holder widths, and hub geometry. It is definitely not simple. THE Car is great but it’s not perfect. No car is. I can’t wait to start developing it further. For now the geometry is not completely off the charts, it shares a lot from current cars, but here I will highlight the main differences, and why I made it different.

Lower Arms

The lower arms are the shortest on the market. The reason for this is, that I always liked a short armed car more. Shorter arms make cars more responsive, but maintain stability when it comes to things other than driver input. For example, short arms make the car track straight in bumps, and make it less sensitive to changes, and surprising situations on the track. Also it helps a lot with steering, and jumping I think.

Long arms on a car gives it more traction, suspension movement, and a more slow reacting stable nature, but I believe to make a car get around a track as fast as the laws of physics allow, it needs short arms.
The arms are also interchangeable left to right.

Arm Holders
Suspension Arm Holder width and arm lengths is something I played around with a lot. I tried many different combinations, and ended up with a set up, which is in fact the opposite to most other cars. THE Car has a wide front arm holder, and shorter arms than most cars. With this set-up I lost some steering, which you could say goes against one of my top 3 main goals for my car, but let me explain. Yes it reduced steering, but it enabled me to drive the car a lot more aggressively, and also set it up differently, to where it actually was faster. It jumped better, handled rough sections better, and was more stable and linear to drive. In sections with many jumps after each other, or woops, it would track more straight, and not go offline, if you messed up the first jump, it was easier to still make the second jump etc. So initially I lost steering, gained stability, but after more testing, I got the same steering as before, with more stability on rough tracks. It was a no brainer at that point.

C-Hubs
For the C-hubs in the front, I went with a similar design to the Losi XX-4 design, because it’s clever. I believe that was the first car with this front end geometry. Actually I also took a really close look at the old Crono cars, because they had the best steering of all cars.
Bringing the point where the arm attaches to the hub, inwards (compared to the og. Kyosho style), and also vertically closer to the wheel centre, makes the car a lot more stable and less prone to flipping over. Also, it helps in the bumps and jumps, because as the suspension compresses, the wheels also move more inwards, and the suspension gets stiffer. You can feel this, as you press the front of the car down, it gets stiffer before the chassis hits the ground. I always liked that. And yes, the arms look just like the Losi’s, because another shape will not fit, it will rub somewhere, and there is no point in being different if it is worse.